

.....

Genetics

Benha University

Faculty of Veterinary Medicine

Program on which the course is given: Bachelor of Veterinary Medical Science

Department offering the course: Animal Wealth Development Department

Academic year: 2nd year

Date of specification approval: Ministerial Decree No 921, on 15/9/1987.

(Then approved in this recent template by department council on 21/5/2006)

A- Basic Information

Title : Genetics Code: Vet 00627 a

Lecture: 30 hrs Practical: 30 hrs Total: 60 hrs

B- Professional Information

1- Overall aims of course

• Understand the basis of inheritance of different genetic traits.

- Provide the students with the necessary knowledge about fine structure of chromosome.
- Know and understand the genetic material, replication, expression and mutation.

2- Intended learning outcomes of the course (ILO_s):

a- Knowledge and understanding:

After successful completion of this course the students should have the ability to:-

- a.1-Describe Basis of inheritance.
- a.2- Mention and Explain different mechanisms of chromosomal aberration and its reflection on phenotype of individual diseases.

b- Intellectual skills

By completion of the course the student should be able to:

- b.1-differentiate among different stages of the cell cycle microscopically including mitosis and meiosis.
- b.2- Interpret the karyotype reports.
- b.3- Recognize the chromosomal aberrations (numerical or structural).

.....

c- Professional and practical skills

By completion of the course the student should be able to:

- c.1- Identify chromosome number and karyotyping of different species.
- c.2- Diagnose phenotypic malformation and sterility problems associated with chromosomal aberations.
- c.3- Identify normal and abnormal spermatogenesis through preparation of chromosome from the tests.

d- General and transferable skills

By completion of the course the student should be able to

- d.1- Explain different methods for inheritance of traits.
- d.2- Gain experience in karyotyping for different species by using different materials (bone marrow, blood, feather bulb from chicken, kidney and gills from fish).
- d.3- Discuss and explain genetic variations.

3- Contents:

Торіс	No. of hours	Lecture	Practical
1- Cytological basis of inheritance	8	2	6
2- Mathematical principles required for genetic problems	6	2	2
3- Transmission and quantitative genetics	8	2	6
4- Phenotypic expression	6	2	4
5- Linkage, crossing over and chromosome mapping	10	2	8
6- Some special cases of interphase chromosome	6	2	4
7- Kariological (chromosomal) studies	2	2	-
8- Chromosomal banding technique	2	2	-
9- Chromosomal aberrations:• Numerical changes.• Structural changes.	4	4	-
10- Sex determination	2	2	-
11- Fertility as affected by chromosome	2	2	-
12- The genetic material	2	2	-
13- DNA replication	2	2	-
14- The genetic code	2	2	-
Total	60	30	30

Quality Assurance Unit وحدة ضمان الجودة بكلية الطب البيطرى

4- content-ILOs matrix

	Content	ILOs			
		Knowle	Intellectual	Professional	General
		dge and		and	and
		understa		practical	transfer
		nding			able
1.	Cytological basis of inheritance		b1, b2,b3	c1, c2, c3	d1,
		A1, a2			d2,d3
2.	Mathematical Mathematical principles				d1
	required for genetic problems principles	a1			
	required for genetic problems				
3.	Transmission and quantitative genetics	a1, a2	b1, b2,b3	c1, c2	d1, d2,
					d3
4.	Phenotypic expression	A2		C2	D3
5.	Linkage, crossing over and chromosome	a2	b 3	c2	d1
	mapping				
6.	- Some special cases of interphase	a1, a2	b1, b2	c1, c2	d1, d2
	chromosome				
7.	Kariological (chromosomal) studies	a2	b2,b3	c1, c2	d1, d2
8.	- Chromosomal banding technique	a2	b2,b3	c1, c2	d2
9.	Chromosomal aberrations:	A2	b2,b3	c1, c2	d2
	 Numerical changes. 				
	Structural changes				
10.	Sex determination	a2	b2,b3	c1, c2, c3	d2
11.	Fertility as affected by chromosome	a2	b2,b3	c1, c2, c3	d2
12.	The genetic material				
13.	DNA replication				
14.	The genetic code				

5- Assessment-ILOS matrix

Assessment	ILOs			
	Knowledge and understanding	Intellectual	Professional and practical	General and transferable
Mid – Term exam	A1,a2	b1, b2,b3		
Practical exam	a1,a2	b1, b2,b3	c1, c2, c3	
Oral exam	a1, a2	b1, b2,b3		
Final term exam	A1,a2	b1, b2,b3	C1,c2,c3	
Assignments and research	A1,a2	b1,b2,b3		d1, d2, d3

6- Teac

Vao day nghe bai nay di ban http://nhatquanglan.xlphp.net/

4.1- Lectures

- 4.2- Clinical and small group sessions.
 - a) Microscopical demonstration of slides.
 - b) Practical training for methods of karyotyping..
 - c) Gene mapping by linkage studies.
 - d) Restriction mapping.
- 4.3- CD's-slides and video tapes.

Demonstration of instruments used in genetic engineering like PCR, DNA sequencing and DNA electrophoretic system.

4.4- Experimental animal and tissue culture.

7- Student assessment methods

- 5.1- Written examination for assessment of knowledge and understanding.
- 5.2- Oral examination for assessment of understanding, intellectual and transferable skills.
- 5.3- Practical sheet examination for assessment of understanding of the theoretical part of the practical course.
- 5.4- Microscopical slides examination for assessment practical and intellectual skills.

Assessment schedule

Assessment 1	Written examination	15	Week
Assessment 2	Oral examination	15	Week
Assessment 3	Practical examination	13	Week.
Assessment 4	Mid term examination	6 10	Week

Weighting of assessment

Mid-term examination	5 %
Final examination	50%
Oral examination	20%
Practical examination	20%
Semester work	5%
Other types of assessments	0%
Total	100%

8- List of references

- **6.1- Department books:** available for students to purshase from book shops in front of the faculty.
- **6.2- Essential books (Text books):**Concept of genetics "William, Michael, Charlot 2006".
 - Genetics "P.S. Verma, V.K. Aggarwal 2006".
 - Cytogenetics "S. Sundara Rajan 2005".
 - Genetic of population "Philip W.H. 2006".

6.3- Periodicals, Web sites, ... etc.

- www. Pubmed.com
- Journal of Animal Science.
- Genetics Journal.
- Genomic Journal.

9- Facilities required for teaching and learning

- 7.1. Lecture Hall: writing board, over head and slide projector and Data show.
- 7.2. Genetics Lab.
- 7.3. Experimental and Lab. Animals.

Course coordinator: Prof. Dr. Shabaan Abd-Elatif hemeda

Head of the department: Prof. Dr. Hatem H. El-Bakry

Date: 9-1-2011